Obsérvese que sobre la recta real estamos en condiciones de acercarnos a una valor particular de x bien sea por valores más grandes (a la derecha) o por valores más pequeños (a la izquierda). Debido a que existen funciones que no se comportan del mismo modo a la izquierda y a la derecha de un valor dado, el concepto de límite lateral puede ayudarnos a dilucidar este tipo de comportamiento. Consideremos por ejemplo la función parte entera de x o escalón unitario (usada frecuentemente para exponer la idea de límites laterales), denotada por E(x) y que se define de la siguiente forma
- E(x) = [x], donde [x] es el mayor número entero inferior o igual a x, tal que, E(x) ≤ x < E(x) + 1.
Su curva es una sucesión de segmentos horizontales a distintas alturas. Consideremos ahora un valor entero particular, por ejemplo 1. En la medida en que nos acercamos a 1 por la izquierda nos damos cuenta que los sucesivos valores de E(x) son iguales a cero, y en la medida en que nos acercamos a 1 por la derecha los valores son iguales a uno. La idea de acercarnos sucesivamente a un valor es la que introduce la noción de límite lateral. A continuación introduciremos las nociones formales de los límites laterales por izquierda y por derecha.
Límite por la derecha
El límite por la derecha de f(x) cuando x tiende a a por la derecha es igual a L, si ∀ε>0, existe un δ > 0 tal que si 0 < x - a < δ, entoces |f(x) - L| < ε. Lo anterior se denota como:
Límite por la izquierda
El límite por la izquierda de f(x) cuando x tiende a a por la izquierda es igual a L, si ∀ε>0, existe un δ > 0 tal que si 0 < a - x < δ, entonces |f(x) - L| < ε. Lo anterior se denota como:
TEOREMA Existe el limite si y solo si los dos limites laterales(por la derecha y por la izquierda) ambos existen y coinciden
Nota:aunque también es valido si consideramos que le limite vale +∞ o -∞ en lugar de 1.
EJEMPLO
Consideremos la función
y calculemos ambos limites laterales cuando
tiende a dos.
Como para valores de
mayores que dos
se tiene que
Para calcular el otro limite lateral, tenemos en cuenta que cuando
es menor que dos
y, por lo tanto

No hay comentarios:
Publicar un comentario