Powered By Blogger

2. Limites laterales

2. Limites laterales


Obsérvese que sobre la recta real estamos en condiciones de acercarnos a una valor particular de x bien sea por valores más grandes (a la derecha) o por valores más pequeños (a la izquierda). Debido a que existen funciones que no se comportan del mismo modo a la izquierda y a la derecha de un valor dado, el concepto de límite lateral puede ayudarnos a dilucidar este tipo de comportamiento. Consideremos por ejemplo la función parte entera de x o escalón unitario (usada frecuentemente para exponer la idea de límites laterales), denotada por E(x) y que se define de la siguiente forma
E(x) = [x], donde [x] es el mayor número entero  inferior o igual a x, tal que, E(x) ≤ x < E(x) + 1.



Su curva es una sucesión de segmentos horizontales a distintas alturas. Consideremos ahora un valor entero particular, por ejemplo 1. En la medida en que nos acercamos a 1 por la izquierda nos damos cuenta que los sucesivos valores de E(x) son iguales a cero, y en la medida en que nos acercamos a 1 por la derecha los valores son iguales a uno. La idea de acercarnos sucesivamente a un valor es la que introduce la noción de límite lateral. A continuación introduciremos las nociones formales de los límites laterales por izquierda y por derecha.


Límite por la derecha

El límite por la derecha de f(x) cuando x tiende a a por la derecha es igual a L, si ∀ε>0, existe un δ > 0 tal que si 0 < x - a < δ, entoces |f(x) - L| < ε. Lo anterior se denota como:
\lim_{x \to a^+}f(x)= L


Límite por la izquierda

El límite por la izquierda de f(x) cuando x tiende a a por la izquierda es igual a L, si ∀ε>0, existe un δ > 0 tal que si 0 < a - x < δ, entonces |f(x) - L| < ε. Lo anterior se denota como:
\lim_{x \to a^-}f(x)= L
TEOREMA Existe el limite si y solo si los dos limites laterales(por la derecha y por la izquierda) ambos existen y coinciden
Nota:aunque también es valido si consideramos que le limite vale +∞ o -∞ en lugar de 1.

EJEMPLO
Consideremos la función


\mathrm{f} \left( \, x \, \right) =
\left\{
</p>
<pre> \begin{array}{ll}
   x^2 & , \quad \text{ si } x > 2
   \\
   2 \cdot x - 1 & , \quad \text{ si } 2 \ge x
 \end{array}
</pre>
<p>\right.

y calculemos ambos limites laterales cuando 
x 
 tiende a dos.

Como para valores de 
x
 mayores que dos


\mathrm{f} \left( \, x \, \right) = x^2

se tiene que


\lim_{x \to 2^+} \mathrm{f} \left( \, x \, \right) =
\lim_{x \to 2^+} x^2 = 4


Para calcular el otro limite lateral, tenemos en cuenta que cuando 
x
 es menor que dos


\mathrm{f} \left( \, x \, \right) = 2 \cdot x - 1

y, por lo tanto


\lim_{x \to 2^-} \mathrm{f} \left( \, x \, \right) =
\lim_{x \to 2^-}
\left(
</p>
<pre> \, 2 \cdot x - 1 \,
</pre>
<p>\right)
</p>
<pre>= 3
</pre>
<p>



No hay comentarios:

Publicar un comentario